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4. Beam-beam interactions

Presently, as it was shown in the previews section, the observed luminosity evolution

is mainly driven by basic diffusion mechanisms; and the beam-beam effects produce

comparatively little effect during the store. Nevertheless they cause significant particle

loss during the beam injection, acceleration and squeeze. Presently, the beam-beam

effects represent the most fundamental limitation of the peak luminosity of the collider. If

not addressed their effect will be even more detrimental at the final Run II parameters.

Beam-beam phenomena are well known to have an effect on the antiproton beam

circulating the Tevatron collider, but there is evidence that they play some roll on the

proton beam as well. Presently, proton intensity is about ten times larger than the

antiproton intensity; therefore the beam-beam effects have largely acted on the

antiprotons. The effects of the antiprotons on the protons have until now been relatively

benign but that may change at higher antiproton currents.

In this section we will consider how the beam-beam interaction affect the beam

dynamics on the different stages of collider operation: injection, acceleration and

squeeze. Although there are a lot of commonalities, there are also phenomena, which

make them different.

4.1. Present operating scenario

The collider shot starts with downloading 36 proton bunches to the collider central

orbit. Every proton bunch is downloaded separately (see Figure 1). After all proton

bunches are downloaded the injection helix is opened and, then, antiprotons are injected

four bunches at a time to the antiproton helical orbit. Typically it takes about 15-20

minutes to transfer all antiproton bunches to their injection helix. Because of beam-beam

effects, and dynamic and physical aperture limitations the lifetime of both beams is

severely affected and the beams loose up to 10% of their intensity in the course of

injection.

After all bunches are injected, acceleration to top energy takes about 85 seconds.

Then, the interaction regions optics (IRs) is changed to lower β*
 from 1.6 m to 0.35 m at

B0 and D0. This process typically takes about 2 minutes. Finally the beams are brought

into collision by collapsing the separation bumps around the IPs. During a high energy

physics store each bunch experiences two head-on collisions with bunches in the

opposing beam and seventy long-range interactions. At all other stages of the operational

cycle, each bunch experiences only long-range interactions – seventy two in all.

Performance limitations from beam-beam effects until now have been primarily due to

these long-range interactions.

At injection the beam lifetime at the central orbit is a few hundred hours. However it

is drastically reduced after helix is opened (Fig.1). The antiproton lifetime is in the range

of 1-10 hors and is mainly determined by the beam-beam effects. In the beam studies

with only antiprotons injected into pbar helix, the lifetimes were found to be in the range

of 20 hrs. By contrast, the proton lifetime at the proton helix is determined by particle

loss due to dynamic and physical aperture limitations and is strongly affected by machine

chromaticity due to dynamic aperture reduction for particle with large synchrotron
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amplitudes. Presence of antiprotons does not produce any significant affect on the proton

lifetime.

The largest antiproton losses before collision are initiated are observed during

acceleration when about 10-15% of the beam is lost. Without protons, the losses during

acceleration are much smaller - about 2%. Proton losses during acceleration are about 5%

(with well coalesced bunches) and do not change much when antiprotons are not present.

During the squeeze, losses in both beams have been low since the helix was changed to

increase the separation at sequence 13 of the squeeze in July 2002.

Figure 1. Dependence of proton and antiproton beam intensities on time during collider shot for Store 2549

(May 15, 2003). Upper line – total DC current in the ring; center line – proton beam current, lower line –

antiproton beam current increased in 10 times .
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Table 1. Typical beam parameters and particle loss observed during Run II

03/02 10/02 01/03 03/03

Protons/bunch at low-beta, 1011 1.4 1.70 1.8 2.05

Pbars/bunch at low-beta, 1011 0.075 0.22 0.20 0.23

P-loss at 150 GeV 23% 14% 16% 10%

Pbar-loss at 150 GeV 20% 9% 4% 4%

P-loss on ramp 7% 6% 9% 5%

Pbar-loss on ramp 14% 8% 12% 11%

Pbar-loss in squeeze 25% 5% 3% 2%

Initial pbar emitt. growth rate εx/εy [% /hr] - 0/0.8 1/2.4 0.4/1.2

Initial proton emitt. growth rate εx/ε y [% /hr] - 3.4/2.4 2.4/2.4 2/1.2

Table 1 presents average particle loss at different stages of collider shot since March

2002. In spite of growing proton intensity the antiproton losses have decreased during the

last year mostly due to improvements of helical beam separation and better control of the

orbits, tunes and chromaticities. Antiproton and proton losses on the ramp together with

proton losses at 150 GeV are the dominant contributors to the Tevatron inefficiency.

Table 2. Collider parameters

Injection Collision

Ring circumference, C [m] 6283.19

Beam momentum, P0 [GeV/c] 149.7 980

Bare lattice proton betatron tunes, νx/νy 20.585/20.575 20.580/20.570

Bare lattice pbar betatron tunes, νx/νy 20.585/20.575 20.570/20.580

Momentum compaction, αM 0.00283

Harmonic number, q 1113

RF frequency, fRF [MHz] 53.104 53.105

RF voltage, V0 [MV/turn] 1.0 1.0

Small amplitude synchrotron frequency, fs [Hz] 86.5 34.8

Synchrotron tune, νs 0.00181 0.000723

Bucket size, [eV s] 4.27 10.8

Bucket height, ∆p/pmax, 10
-3

1.17 0.456
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The emittance growth of antiprotons have

been larger vertically than horizontally and, as

will be shown below, is attributed to the beam-

beam interactions. Proton emittance growth

rates are mainly due to intra-beam scattering -

the growth rates in the transverse planes are

nearly equalized due to strong coupling.

Table 2 shows major collider parameters.

The helical beam separation is different at

different steps of the collider cycle since the

requirements are different (see Section 5 for

detail) Table 3 presents voltages on the high

voltage separators, which are presently used at

the injection and collisions; and Figure 2 depicts

corresponding relative beam separations for all

collision points at the collision cogging. If it is

not pointed out otherwise these parameters and

beam separations are used below. The relative

beam separation presented in Figure 2 are computed using the following equation:

( ) ( )2)(2)( // ββ σσ yyxx ddS += , (1)

where dx and dy are the total horizontal and vertical beam separations, and )(βσ x  and )(βσ y

are the rms betatron beam sizes.

Figure 2. Relative beam separation starting from B0 for injection (top) and collision helices with voltages

presented in Table�3. Reference emittance 20 mm mrad.

Table 3. Voltages of high

voltage separators used for

collider operation in May 2003

Injection Collision

A17V 0 ±6.90

A49V 0 ±83.5

A49H 0 ±100.

B11V ±22.62 ±100.

B11H ±36.99 ±100.

B17H ±64.35 ±47.7

C17V ±58.85 ±48.4

C49V 0 ±83.0

C49H 0 ±93.0

D11V 0 ±100.

D11H 0 ±86.8

D48H 0 ±15.1
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4.2. Incoherent beam-beam effects

By incoherent effects we understand the effects produced by the quasi-equilibrium

field of the opposing beam, in contradistinction to the coherent beam-beam effect which

results in correlated oscillations in both beams (see next section).

Particle motion in the field of the opposing beam is governed by the Hamiltonian

which in the case of short bunches (σs <<β *
) with Gaussian charge distribution can be

presented in the form (see Refs.[1,2])
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where r = σy/σx, is the aspect ratio, σx,y are full (including the synchrotron part) r.m.s.

sizes of the opposing beam, α is crossing half-angle (presently α = 0), zyx ~,~,~  are the

particle excursions in the course of betatron and synchrotron oscillations, δp(θ) is the

periodic δ-function of the generalized azimuth θ  which should not be confused with the

momentum deviation δp.

Effect of finite bunch length in practically important cases can be taken into account

with additional factor (see subsection 4.2.2).

The incoherent beam-beam effects can be classified as the ones affecting the single-

particle tunes (amplitude-dependent shifts in tunes, chromaticity and coupling) and the

resonances leading to growth (variation in general) in the oscillation amplitudes.

To analyze these effects it is convenient to introduce the action-angle variables Iu, ψu,

u = x, y, z, via relations
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where µx,y are the betatron phase advances.

4.2.1. Linear and non-linear shifts in tunes, chromaticity and coupling

To obtain the tuneshifts from the Hamiltonian (2) one should average it over θ and all

phase angles ψu and take derivatives,

,,,,)( syxuH
I

bb

u

bb
u =

∂

∂
=∆ν (4)

Efficient algorithms for calculation of the tuneshifts as functions of all three action

variables or just of two transverse ones were presented correspondingly in Refs.[1-3]

and [4].

In what follows we will repeatedly cite linear (i.e. small-amplitude) tuneshifts, which

are important from the point of view of the bunch-to-bunch tunespread arising from a
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different collision schedule for each bunch in a train.

Nonlinear beam-beam effect results in an intra-bunch tunespread. Both tunespreads

contribute to the area occupied by the beam in the tune plane and should be reduced in

order to avoid dangerous resonances. However, some spreads should remain in order to

stabilize coherent instabilities and provide detuning with amplitude from incoherent high-

order resonances which are difficult to avoid.

Tuneshifts due to head-on collisions of round beams are well studied, at small

amplitudes they are given by the so-called beam-beam parameter

p

ppNr

⊥

=
πγε

ξ
4

(5)

Linear tuneshifts due to long-range

collisions at large separation are given by

formulas
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which shows that at a diagonal separation

(|φ | = π/4) linear tuneshifts vanish.

Figure 3 presents bunch-by-bunch linear

tuneshifts at 150 GeV calculated by

analytical formulas of Refs.[1,2] (left) and

with MAD TWISS command (right) for

bare lattice tunes on the pbar helix 20.5820, 20.5705 (feeddown effect from sextupoles

not compensated in these calculations). The MAD values occurred much lower than

analytical prediction, the reason being strong dynamic beta effect not included in

analytical calculations.

The bunch-by-bunch linear tuneshifts at collision are shown in Fig.4; the dynamic

beta effect being noticeably weaker except for the so-called PACMAN bunches.

)(
,
bb
yxν∆

)(
,
bb
yxν∆

bunch # bunch #

Figure 3. Antiproton bunch-by-bunch linear tuneshifts at 150 GeV with Np=3⋅1011; left - analytical

calculations (diamonds – horizontal, squares – vertical); right - MAD TWISS command without

coupling (diamonds and squares) with bare lattice tunes on the pbar helix 20.5820, 20.5705; lines

show analytical values from the left.

)(
,
bb
yxν∆

bunch #

Figure 4. Antiproton bunch-by-bunch linear

tuneshifts at collision with Np=2.7⋅1011 computed

with MAD (diamonds – horizontal, squares –

vertical) and by analytical formulas (lines)
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The tuneshifts in the PACMAN bunches

(vertical in the first bunch and horizontal in

the last) are significantly smaller than in the

regular bunches since the PACMAN

bunches suffer near-miss interactions only

on one side of the nominal IPs at B0 and D0

(see Fig.2, bottom).

Such large difference in the linear

tuneshifts makes it difficult to accommodate

all bunches in a resonance-free region in the

tunes plane; a number of solutions were

proposed to reduce the spread in linear

tunes: beam-beam compensation with

electron lenses and/or pulsed wires;

augmenting each proton train by

forerunning and trailing bunches. These

options are discussed in the corresponding

sections of this report.

The tunespread inside each bunch is

determined by combination of the beam-

beam and machine nonlinarities. As Fig.5

demonstrates at injection the machine

nonlinarities dominate.

At collision, on the contrary, the intra-

bunch tunespread is almost completely

determined by the beam-beam interactions.

Fig.6 shows pbar bunch #6 footprint in the

tune diagram with bare lattice tunes 20.585,

20.575 (‘standard’ WP) at the design proton

intensity. Red lines show resonances of 5
th

,

7
th

 and 12
th

 orders. It is obvious that it is

impossible to accommodate all particles

with amplitudes within 6σ in the area free of

these resonances.

4.2.1.1. Beam-beam chromaticity

Due to the finite dispersion at parasitic IPs

there should be some dependence of the

beam-beam tuneshifts on the synchrotron motion. Calculations show that for the average

values of the tuneshifts over the synchrotron period this dependence is negligible.

However, there can be significant variation of the instant values of the tuneshifts

which we will treat in terms of the beam-beam contribution to chromaticity.

In the course of synchrotron oscillations the distance between the particle and the

center of the opposing bunch varies as dx,y =  dx,y0 + Dx,y δp leading to variation of the

long-range tuneshift. The corresponding contribution to chromaticity is:

Figure 5. Tune footprint of bunch #1 at

injection  (to 6σ in each plane) with only

beam-beam and with both beam-beam

and machine nonlinearities.

νy

νx

Figure 6. Footprint of bunch #6 at collision with

Np=2.7⋅1011 and the ‘standard’ WP (green dot);

the arc lines are drawn with step 2σ  in the

transverse amplitude for the reference emittance

15π mm⋅mrad.
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In the case of large separation we get from eq.(7) an approximation for linear (i.e.

small betatron amplitude) beam-beam chromaticity:
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In absence of vertical dispersion the

chromaticity would vanish if the separation

is either vertical or at φ = 30°. In practice

this requirement cannot be fulfilled.

 Figure 7 presents bunch-by-bunch

linear beam-beam chromaticity computed

with MAD and by analytical formulas of

Ref.[2] at injection (Np=3⋅10
11

) and collision

(Np=2.7⋅10
11

). In the horizontal plane the

beam-beam contribution is comparable with

the bare lattice chromaticity (+8 at injection

and +16 at collision).

An important feature of the beam-beam

chromaticity is its strong dependence on the

betatron amplitudes as shown in Fig.8.

Due to large bunch-to-bunch and intra-bunch spreads the chromaticities cannot be

made small simultaneously for all particles in all bunches with the help of correction

sextupoles.

4.2.1.2. Beam-beam contribution to coupling

Beam-beam interaction may affect the tunes also via its contribution to the cross-plane

coupling. The linear effect is described by the terms in the Hamiltonian with the

resonance numbers mx = 1, my = ±1 (see next subsection). With the tunes close to the

main diagonal, only the term responsible for the difference resonance can be retained, the

χx

bunch #

χx

χy

χy

bunch #

χ χ

Figure 7. Antiproton bunch-by-bunch linear shifts in chromaticity at injection (left) and collision

(right) computed with MAD (diamonds and squares) and by analytical formulas of Ref.[1] (lines)

Figure 8. Total p distribution in the

chromaticity plane at collision, particles with

zero betatron amplitudes in each of the 12

bunches in a train are shown with red circles.

χy

χx
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expression for the minimum tunesplit being:

yx IIRC /1,1 −=   (9)

Again, it is instructive to obtain an

approximation for large separation

(see.eq.(18))
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ββ

d

Nr
C

yxpp
= (10)

which shows that linear coupling vanishes

when the separation angle is 45°.

The bunch-by-bunch coupling

coefficient at injection computed by exact

formulas is shown in Fig.9. It is large

enough to affect the tunes in some bunches.

At collision the beam-beam contribution to coupling is much smaller.

4.2.2. Resonance driving terms and resonance widths

Let us remind the possible effects of incoherent resonances on particle dynamics.

In the vicinity of an isolated resonance

∆m = m⋅ν – n ≡ mxνx + myνy + msνs – n�≈ 0, (11)

where tunes νx,y are assumed to be functions of the action variables, we can drop

insignificant terms and going into the rotating frame write the Hamiltonian in the form [5]

121,121 cos),()(),(
1

ψIIRILIdIIH
msmm

I

m s
+′′∆≈ ∫ , (12)

where Rm is the resonance driving term (RDT), ψ1 = mxψx + myψy - msψs - nθ,

I1 = (mxIx + myIy)/( mx
2
+ my

2
), I2 = (myIx - mxIy)/( mx

2
+ my

2
) = inv, Lm,ms(Is) describes the

effect of modulation of betatron tunes and/or betatron phase advance at the actual

collision point by the synchrotron motion; Lm,ms(0) = 1 (let us note that such factorization

is not possible in the cases of finite dispersion and/or crossing angle). In all practical

cases the synchrotron amplitude itself may be regarded as a constant of motion.

In the case of dominant effect of chromaticity the longitudinal factor is given by the

well-known formula (see e.g. Ref.[5])

)(J 0, p

s

yyxx

mmm

mm
L

ss
δ

ν

νν ′+′
= , (13)

where ssMp IR ναδ /2
0
= is the synchrotron amplitude, Jm(x) is the Bessel function of

order m.

♦ In the presence of strong nonlinear detuning with amplitude an isolated resonance

manifests itself as beatings in the betatron amplitudes, phase space trajectories are

bounded forming so-called resonance islands (see Fig.10 for example).

Neglecting variation of Rm and ∆′m = ∂∆m/∂I1 in the vicinity of the fixed point the

resonance half-width in the action variable space can be estimated as (Lm,ms = 1):

C

bunch #

Figure 9. Antiproton bunch-by-bunch linear

coupling coefficient at injection computed by

analytical formula.
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In the tunes plane the resonance half-width

is given by

2/1

2
mmm

R ∆′⋅≈∆δ . (15)

There is a closely related value, the

island tune, which is the tune of small

amplitude libration w.r.t. the stable fixed

point in the rotating frame:
2/1

isl mm
R ∆′⋅≈ν . (16)

The island tune gives the time scale of

particle transport on a resonance.

♦ A group of resonances can create

dynamic chaos leading to particle diffusion

to large amplitudes if the (refined) Chirikov

overlap criterion is satisfied (see e.g. Ref.[6]), i.e. if the distance between the resonances

is less than 3/2 of the sum of the resonance islands half-widths.

In a real system subject to external noise diffusion will take place anyway, but on a

different time scale (see section 4.2.5 for discussion)

♦ Slow variation in the betatron tunes, δνx,y (which may be called forth by the orbit

deviations inside the sextupoles, current ripple in the quadrupoles etc. with spectrum

below νisl) makes the resonance islands move in- and outwards in the phase space

transporting the trapped particles to larger amplitudes. This process, which we will call

“sweeping”, increases the effective width of the resonance as

δνδδ ⋅+∆≈∆ m
mm

eff
(17)

In the case νs ≤ νisl formula (17) is approximately valid for chromatic tune modulation as

well if we put ),( 00 pypx δνδνδν ′′= .

4.2.3. Beam-beam resonances at collision

With the standard for Tevatron choice of the bare lattice tunes νx = 20.585, νy = 20.575

the pbar footprint in collision encompasses 5
th

 and 12
th

 order resonances and is quite

close to the 7th order resonances  (Fig.6).

4.2.3.1. Long-range interaction

In absence of large offsets at the nominal IPs the odd-order resonances are driven by

long-range interactions (each bunch in Tevatron experiences 2 head-on and 70 parasitic

long-range interactions, there is total of 136 parasitic interaction points).

Let us start with a simple asymptotics for the resonance driving terms at large

separations and small betatron amplitudes:
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Figure 10. Phase space trajectories on the single-

dimensional 12
th

 order resonance 12νx=7; σs=50

cm, ∆p/p=0, two Tevatron IPs with ξ=0.01 each,

no long-range collisions, small amplitude island

tune is about 0.00023.
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where p = | mx | + | my | is the order of the resonance, showing that there are 2p values of

the angle at which RDT vanishes. However, at separations smaller than 5σ approximation

(18) fails. Also, one should use exact formulas of Refs.[1, 2] at the amplitudes

commensurable with the separation.

The effect of the 5
th

 order resonances and their synchrotron satellites was studied in

Ref.[2]. The betatron tune modulation by synchrotron oscillations turned out to be the

strongest mechanism of the satellites excitation; it was shown that the long-range beam-

beam interaction itself introduces large chromaticity (ν′x,y ~10) sufficient to drive high

order satellites.

The resonance widths were calculated using exact formulas which take into account

the real dependence of tunes and resonance driving terms on betatron amplitudes. The

results are presented in Fig.11 for on-momentum particles in pbar bunch #6 (left plot)

when no satellite is excited and for δp0 = 1.25⋅10
-4

 (right plot). The bare lattice

ax

ay ay

3νx+2νy

ax

4νx+νy

5νx

2νx+3νy

Figure 11. Swing of the normalized transverse amplitudes in pbar bunch#6 at collision on

the 5
th

 order resonances and their synchrotron satellites at synchrotron amplitude δp0 = 0

(left) and δp0 = 1.25⋅10
-4

 (right). The ‘standard’ WP, the bare lattice chromaticities put to

zero, reference emittance 15π mm⋅mrad.

ms

4νx+νy

5νx

a⊥

Figure 12.  Swing of the transverse amplitude

due to individual synchrotron satellites of the

5
th

 order resonances at δp0 = 1.25⋅10
-4

.

3νx+2νy

lg|R5,0

#IP

Figure 13. Contribution from all parasitic IPs to

the 5νx resonance driving term at ax = 3 starting

from B0 (nominal  IP#1).
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chromaticity was set to zero.

In the case of synchrotron oscillations the principal resonances (ms = 0) are, in

accordance with eq.(13), noticeably suppressed (e.g. the 2νx+3νy resonance width falls

below the chosen threshold, ∆a<10
-3

). However, due to excitation of numerous satellites

the effective resonance width is substantially increased. The satellites overlap is

illustrated by Fig.12 which shows the width of satellites of different resonances along the

line ay = ax = a⊥ /√2.

It is obvious that with the standard working point the 5
th

 order resonances and their

synchrotron satellites will lead to fast particle diffusion over the range of normalized

betatron amplitudes from a⊥ ≈ 1.75 to a⊥ ≈ 3.25 affecting not only the pbar lifetime but

the luminosity as well. To discuss possible cures some more insight is required.

Fig.13 shows contribution from all parasitic IPs to the 5νx resonance driving term

(RDT). It can be seen that only two points, just before two nominal IPs - B0 (IP#1) and

D0 (IP#47) - provide significant contribution. These are the near-misses where the β-

functions are βx ≈  151m, βy ≈  11m and the separation between the orbits is

| dx | ≈ 0.57mm, | dy | ≈ 1.13mm. Contribution from the near-misses just after B0 and D0

where the ratio βx/βy is inverted, is by 3 orders of magnitude lower.

The resonance excitation can be reduced by increasing the total separation
22

0 yx ddd += and also by appropriate choice of the separation angle

)/arctan( xy dd=φ  as illustrated by Fig.14.

An obvious solution would be to make separation completely vertical (and

completely horizontal in the downstream near-misses) – then excitation of the odd-order

resonances would be forbidden by symmetry. However, in this case the contribution to

the horizontal tuneshift would reach its maximum (see Fig.14).

As seen in Figs.14, 15 the problem of near-misses can be significantly alleviated by a

two-fold increase in the total separation and making the separation diagonal: | dx | ≈ | dy |

as proposed for LHC Ref.[7].

4.2.3.2. Head-on interaction

An apparent cure would be to lower the tunes to get off the 5
th

 order resonances.

However, in this case pbars tunes will be well within the region of the 12
th

 order

Figure 15. Contribution to ∆νx from IP#46 vs

separation angle at the same values of the

total separation as in Fig.14.

φ

R5,0 1

2

3

4

Figure 14. Contribution to 5νx RDT from

IP#46 vs separation angle at total separation

values: 1 – 1.25mm; 2 – 1.5mm, 3 – 1.75mm,

4 – 2.5mm.

∆νx

φ
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resonances which are driven mainly by the head-on interactions.

The head-on interactions provide by far the strongest nonlinear field that can drive

even order resonances. However, due to a large ratio of the bunch length to β-function at

IPs in Tevatron (design value σs /β 
*
= 37/35, actual value σs /β 

*
= 60/35), there is strong

suppression of high order resonances in the result of phase averaging.

The phase averaging of even order resonances 2m = |mx| + |my| in round beams with no

offsets can be described by the longitudinal suppression factor (see Ref.[2]) which

generalizes the Bessel satellite formula (13):
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where as = As/σs = δp0/σp  is relative synchrotron amplitude, λ =σs /β 
*
, η = ν⊥′/αMR  is

chromaticity related parameter.

Fig.16 shows this factor for 12
th

 order

principal resonances (ms = 0) as function of

bunch length σs  at as = 1 and chromaticity

values ν⊥′ increasing from 0 to 12. It can be

seen that chromaticity noticeably reduces

resonance excitation at σs ~ 60cm.

At the same time the chromaticity

drastically increases the number of

synchrotron satellites with the strength

comparable to that of the principal

resonance. Fig.17 shows the longitudinal

factor of the satellites of the 12
th

 order

resonances at large synchrotron amplitude,

as = 3, and three values of chromaticity.

The large number of strong satellites

makes the effective width of the resonances

very large. Fig.18 shows swing of the

normalized transverse amplitudes in pbar

L12 0

σs

1

2 3

Figure 16. Longitudinal factor for 12
th

 order

resonances as function of bunch length

σs (cm) at synchrotron amplitude as = 1 and

chromaticity values: 1 - ν⊥′ = 0; 2 - ν⊥′ = 6;

3  - ν⊥′ = 12.

L12, ms

ν⊥′ = 0

ν⊥′ = 3

ν⊥′ = 6

ms

Figure 17. Longitudinal factor as function of

the satellite number ms at as = 3 and indicated

values of chromaticity.

ay

ax

Figure 18. Swing of betatron amplitudes due to

satellites of the 12
th

 and 7
th

 order resonances with

lowered tunes 20.58, 20.75 at δp0 = 3⋅10
-4

 and

ν⊥′ = 12; reference emittance 15π mm⋅mrad.
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bunch #6 on the 12
th

 order resonances and their satellites at synchrotron amplitude

δp0 = 3⋅10
-4

 (as = 2) and tunes νx = 20.58, νy = 20.57 lowered so as to avoid 5
th

 order

resonances. Also shown are the 7
th

 order resonances excited mainly by the near-misses

downstream the nominal IPs. Chromaticity in these calculations was set to 12.

There is a pronounced effect of 12νx (red), 10νx+2νy (green), 8νx+4νy (blue), 6νx+6νy

(violet), 4νx+8νy (orange), νx+6νy (yellow) and 7νy (cyan) resonances whose satellites

overlap forming the region of fast dynamical diffusion starting from transverse

amplitudes a⊥ = (ax
2
+ ay

2
)

1/2
≤ 4.5 (for emittance 15π mm⋅mrad).

Therefore the possibility of lowering the tunes at high proton intensities and high

chromaticity is limited.

4.2.3.3. Beam-beam effect on protons

It is noteworthy that in the case when the nonlinear tuneshift is dominated by the

beam-beam effect there is no dependence of the resonance width in the phase space on

the intensity of the opposing beam (provided it is encountered at the same amplitudes)

since both numerator and denominator in eq.(14) are proportional to it.

Therefore the protons are equally susceptible to the beam-beam resonances despite

lower pbar intensity. In fact the effect on the protons can be even more detrimental due to

smaller pbar emittance and therefore higher nonlinearity of the field they are creating.

However at present small pbar intensity the satellites of the 12
th

 order resonances for

protons do not overlap so that no wide region of dynamical stochasticity is created.

4.2.3.4. Cures

There is a number of ways to alleviate the problem with beam-beam resonances in

collision:

♦ Reducing the strength of the 5
th

 order resonances (which are excited mainly by

parasitic interactions nearest to the nominal IPs) by increasing separation with the help of

additional separators and/or small crossing angle and optimizing the separation angle;

♦ Compression of the pbar tunespread with the help of electron lenses (nonlinear BBC);

ay

ax
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m
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=
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Figure 19. Footprint of pbar bunch #6 at injection on the grid of satellite lines of 5νx�and 7νy resonances

(left) and amplitude beatings due to satellites of the indicated resonances (right) at δp0 = 7⋅10
-4

 and

ν⊥′ =8. Bare lattice tunes 20.585, 20.575, injection helix of 2001, reference emittance 15π mm⋅mrad.
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♦ Lowering chromaticity (probably this will require octupoles to stabilize coherent

modes).

4.2.4. Beam-beam resonances at injection, ramp and squeeze

There is a number of reasons which make

beam-beam resonances no less dangerous at

these stages than they are in collision

despite absence of head-on interactions.

4.2.4.1. Beam-beam resonances at injection

The following circumstances contribute to

beam-beam effect at injection:

a) separation between the beams is

limited by available aperture (in some places

by physical aperture, but generally by the

dynamic one);

b) energy spread is much larger,

σp ≈ (5÷6)⋅10
-4

, leading to strong synchro-

betatron coupling despite lower

chromaticity;

c) smaller vertical tuneshift with

amplitude leaves pbars within the reach of

the synchrotron satellites of the 7
th

 order resonances.

The last two circumstances may increase the resonance excitation by machine

nonlinearities as well (which already determine nonlinear tuneshift with the present

injection helix). However, analysis of the nonlinear map with and without beam-beam

interaction showed that the contribution of the machine nonlinearities to resonance

excitation is small compared to the beam-beam interaction [8].

In the beginning of Run II the beam-beam resonances at injection proved to be a

major limiting factor. Fig.19 from Ref.[9] shows the footprint of pbar bunch #6 and effect

of the 5
th

 and 7
th

 order resonances at 150 GeV with 2001 injection helix and nominal

proton beam parameters. One can see quite strong effect of the νx + 6νy resonance as

well, although the WP distance from it is larger than from the 7νy resonance.

With the present helix design introduced in May 2002 the beam-beam resonances

became much weaker, still they may affect pbar lifetime if the chromaticity is not low

enough. Again, the νx + 6νy resonance is the strongest, as comparison in Fig.20 shows.

However, we use the strength of the 7νy resonance as a figure of merit of helix design

since this resonance is the nearest one to the working point.

There was a hope that after removal of C0 Lambertson magnets which presented the

most severe restriction of the vertical aperture it would be possible to further reduce the

beam-beam effects at injection. But the experimental studies showed that even employing

all five separators which presently have polarity switches (two horizontal: B11H, B17H,

and three vertical: B11V, C17V, C49V) it was not possible to achieve significant

weakening of the beam-beam effects without increasing separation in other regions of

limited physical and/or dynamic aperture.

|Rm|

arctan(ax /ay)

3

1
2

4

Figure 20. Driving terms of the 7th order

resonances with the present injection helix as

functions of the ratio of betatron amplitudes

at a ⊥ = (ax
2
+ ay

2
)

1/2
 = 2 with reference

emittance 20π mm⋅mrad: 1 - 3νx + 4νy,  2 -

2νx + 5νy,  3�- νx + 6νy,   4 - 7νy.
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4.2.4.2. Beam-beam resonances at ramp & squeeze

In the end of the ramp/beginning of the squeeze the strength of the available at this step

separators is not sufficient to provide the same relative separation (in

r.m.s.,
)(
, εβσ β

yxyx = ) as at injection. However, the reduction can be made less dramatic by

employing more separators.

Presently at this step the 2001 helix design is still effective which employs just two

separators: B17H and C17V run at the maximum voltage of ±115.7 kV. Fig. 21 shows the

improvement in the minimum value (over all 138 interaction points) of the radial

separation S (see Eq.(1) for definition) during the ramp and squeeze which can be

achieved by using all three vertical separators with polarity switches (additional ones

with voltages in the beginning of the squeeze B11V= ±20.9kV, C49V= ±62.65kV).

Calculations of the beam-beam tuneshifts and resonance driving terms in the end of

the ramp (EOR) with injection cogging and beginning of the squeeze (BOS) with

collision cogging show significant improvement due to additional separators.

Table 4 presents the maximum values (over 12 pbar bunches in a train) of small-

amplitude tuneshifts and 5νx and 7νy RDTs at betatron amplitudes of 3σx and 3σ y
correspondingly at injection, EOR and BOS with slightly reduced voltages (Umax =106.5

kV).

Table 4. Comparison of beam-beam effects at different steps with present and new

helix designs

helix step Smin |∆νx|max |∆νy|max |R50|max⋅1012 |R07|max⋅1013

injection 6.33  .0028 .0019 1.47 0.28

EOR 3.26 .0066 .0031 2.02 1.45

present

BOS 3.09 .0078 .0031 2.33 2.54

injection 6.34  .0019 .0011 1.19 0.29

EOR 4.46 .0033 .0016 1.07 0.31

new

BOS 4.60 .0045 .0021 1.31 0.51

Figure 21. Minimum radial separation vs. energy on the ramp (left) and during the squeeze vs.

β-function at nominal IPs (right) for the present helix (red diamonds) and one of the new

versions (blue squares), reference emittance 15π mm⋅mrad

Energy (GeV)

Smin Smin

β∗ (m)
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4.2.4.3. Beam-beam effects at squeeze sequence 16

During the squeeze B17H separator (which is the main horizontal separator at injection)

must change its polarity. This helix rearrangement, which presently takes place at

β∗ = 0.5m (sequence 16), results in a significant drop in the separation.

In the beginning of Run II there were large pbar losses at this step resulting in

decrease in luminosity with larger proton intensity. In March 2002 a solution was found

providing a 50% larger separation at the minimum point. This solution, together with

increased slew rate of feeddown sextupoles, allows to pass this step without noticeable

pbar losses.

A further moderate improvement can be achieved just by temporarily increasing the

separator voltages at this step.

The search is underway for a principally new solution employing larger number of

separators as discussed in the corresponding section.

4.2.5. Effect of beam-beam interaction on beam emittance evolution and lifetime

Although resonance widths characterize the strength of the beam-beam effects they

are not directly related to the particle loss and emittance growth in the collider. Unlike the

electron-positron colliders there is no suppression of dynamic diffusion by synchrotron

radiation (SR) damping in the hadron colliders. That results in a requirement that the

resonances should not overlap in a fashion allowing a particle to be transported from

small amplitudes to the machine aperture by dynamic diffusion. In practical terms it

usually limits the total linear tune shift by ~0.02 – 0.03. Because of absence of SR

damping there is long-term memory in the beam and therefore tracking for very large

number of turns is a major way to understand effects of no-linearities on the evolution of

beam distribution. But direct tracking is presently limited to a few million turns, which

represent only about 1 minute of beam life in Tevatron. Nevertheless hierarchy of time

scales in the problem allows one to decompose effect of different phenomena and

compute the beam lifetime and particle loss for the entire store duration.

There are three important time scales related to the particle loss and emittance growth

in the collider. The first one is period of oscillations inside resonance islands. It depends

on the resonance order and strength, and usually ranges between few hundred and few

thousand turns. The second one is the time of the resonance driven diffusion between

overlapped resonance islands. It is slower than the motion inside resonance but still is

much faster than the time related to IBS and other non-dynamic diffusion mechanisms

discussed in Section 3. Although this third time scale is very slow (~10
8
 turns) comparing

to the first two, it actually determines the beam parameters evolution during the store. In

this case the beam-beam interaction and lattice non-linearities facilitate the “external”

diffusion but are not the primary mechanisms of particle loss and emittance growth. Note

that this picture is completely different from electron-positron colliders where the particle

to be lost must travel from small to large amplitudes during one SR damping time of few

thousand turns.

To describe particle motion in the presence of nonlinear fields and diffusion we start

from Vlasov equation written for normalized coordinates and velocities,
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Transformation to the action-phase variables and averaging over phases yields
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Here the diffusion and friction are related to the non-linear dynamics in the left-hand side

and to the actual diffusion on the right-hand side. The only friction force is due to IBS. It

is negligible comparing to diffusion for Tevatron parameters and therefore we finally can

write that
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The solution of this equation is strongly simplified by the fact that the dynamic diffusion

( )IijD
~

 is much larger than the “external” diffusion ( )IijD . In this case we can put ( )IijD
~

to infinity inside resonance islands and to zero outside.
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Figure 22. Distribution function evolution under combined effect of noise and beam-beam interaction in

vicinity of 6-th order resonance, ν=0.325, ξ=0.02 with one IP,  ∆p/p=0, σs << β *; red line – initial

distribution, blue line – after 5000 turns, green line – after 10000 turns. Left figure is obtained by tracking

of 20,000 particles for 10,000 turns. Right figure is obtained by solving Eq. (22) with resonance width

found by tracking (see Figure 23).

To verify accuracy of the described above

model we compared its prediction with results

of particle tracking in the presence of beam-

beam interaction and external noise. Figure 1

presents results in the form of distribution

function F(r) over phase space radius r so that

it is bound to the distribution function by the

following equation F(r) = r f(r).

In the case of tracking the phase space

radius is determined by the following equation

( )( ) 222
2tan/21 pxr πνπκξ++= , κ≈1, (23)

where the term proportional to the linear tune-

shift ξ is introduced to correct a distortion of
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Figure 23. Phase trajectories in vicinity of 6-th order

resonance with beam parameters of Figure 22.
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phase space trajectories introduced by the linear part of beam-beam force. The tracking

was performed in vicinity of 6-th order resonance for bunches of zero length and one IP

with the linear tune shift ξ=0.02. It increased the resonance width and the frequency of

particle motion inside resonance island and, consequently, allowed to demonstrate the

effect of the resonance clearly with only 20,000 particles and 10,000 turns. For chosen

parameters the period of oscillations inside resonance island Nisl ranges from ~150 turns

at small amplitude to ~250 turns at large amplitude.  The noise was simulated by random

jumps in the phase space at every turn. The initial distribution function was gaussian with

σ = 1. The rms value of jumps of 0.01 was chosen so that after 10,000 turns the beam

emittance would be doubled. In average after one revolution around resonance island

such noise randomly displaces the particle by 15.0≈∆
isl
N  which is about 6 times

smaller than the island width. In this case particle transport from one to another side of

the island mainly occurs due to dynamic motion while diffusion is responsible for particle

transport outside the resonance. That is a necessary condition for correct description of

the particle diffusion through the resonance island.

The right hand part in the Figure 1 presents results of numerical solution of Eq. (22)

with resonance boundaries taken from particle tracking in vicinity of resonance (see

Figure 23). One can see that there is quite close coincidence in spite the fact that we

neglected actual shape of resonance islands in solution of Eq. (22). It resulted in the sharp

angles on the right-hand picture of Figure 22. Figure 24 presents the dependence of rms

beam emittance on time obtained by solving Eq. (22). There are three different time

scales determining the beam size evolution. The first one is related the period of

oscillations in the resonance islands, which levels the distribution function after few

thousand turns. It causes instant jump of emittance in Figure 24. Then the distribution

function around the resonance islands comes to local equilibrium with time constant

determined by the resonance width ∆, 25.04/
2

≈∆≈ Dτ . Finally, the emittance grows

linearly with time, but the emittance growth rate is amplified by resonance by factor ~1.5.
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Figure 24. Dependence of the rms emittance on time obtained by numerical solution of Eq. (22) with

parameters of Figure 1; solid line – results of simulations,  dotted line – presents results in the absence of

beam-beam effects, dashed line – linear dependence presenting emittance growth for large time,

ε=1.1+1.5t.

In the general case Eq. (22) need to be solved in the three-dimensional space of

actions with beam-beam diffusion depending on all three actions. It requires computing

boundaries for all resonances; the problem that is not much simpler than direct tracking

for millions turns. However described above picture puts insight how the beam-beam
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effects work during store. It also determines how reliable simulation of beam-life time

and particle loss can be performed. To achieve accuracy of about 10% in computations of

beam lifetime the resonances with width more than ~ 0.1σ  need to be correctly

represented. The period of oscillations in resonance islands for resonances of 12-th order

is quite slow and usually is about 2000 – 4000 turns. A requirement that the noise should

not transport particle by more than 15% of resonance width during one revolution around

the island sets the noise step size per turn to be 4
1033000/15.01.0

−
⋅≈⋅ . That yields

that after 10
6
 turns the beam size will grow by 30% and the emittance by factor ~1.7.

Depending on beam current that represent 10 to 100 hours of real beam life. We plan to

start such simulations soon and the first results are expected by the end of 2003.

4.3. Coherent beam-beam effects

In this section we will discuss what impact the beam-beam interaction may have on

stability of coherent motion, in particular:

♦ Landau damping by the tunespread in proton and pbar beams introduced by the beam-

beam interaction;

♦ Possibility of appearance of discrete spectral lines of coherent beam-beam oscillations

(undamped by the beam-beam tunespread) with increasing number of pbars;

♦ Resonances of coherent beam-beam oscillations.

Also, we will discuss two major mechanisms of suppression of coherent beam-beam

oscillations: tunesplit between the interacting beams and Landau damping by overlapping

synchrotron sidebands on incoherent betatron tunes.

4.3.1.  Landau damping by the beam-beam tunespread

The high intensity proton beam in the Tevatron is prone to coherent instabilities at all

times starting from injection until the beams are put into collision (and sometimes even

after that).

So far the main remedy from the transverse instabilities was high positive

chromaticity (+8 at injection, +(16÷20) during ramp, squeeze and in collision) which

provides damping of the dipole modes. Recently digital transverse dampers were made

operational during pbar injection allowing to reduce chromaticity by ~ 4 units. However,

positive chromaticity may provoke transverse head-tail instability incurable with

dampers.

The main mechanism of stabilization of the transverse modes is Landau damping due

to spread in betatron and (for the head-tail modes) synchrotron tunes. At top energy the

beam-beam interaction is the major source of the tunespread in both beams.

The theory of Landau damping in the case of limited tune variation requires some

comments.



48

4.3.1.1  The Liouville-Vlasov equation

We make the conventional choice of the generalized azimuth θ = s/R as the independent

variable and the action-angle variables I I I Ix y s= ( , , ) , ),,( syx ψψψψ =  as canonical

variables; by the action variables we understand the renormalized invariants of motion

with account of the beam-beam interaction and chromaticity (and divided by the r.m.s.

emittance, so that their mean values equal 1).

The invariants of motion can be used in construction of the equilibrium

distribution function which we presume to be Gaussian:
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0 )( syx III
eIF

++−
= (1)

To simplify the formulas let us limit ourselves to one-dimensional problem. Small

perturbations of the distribution function F1(Ix,ψx;θ) are governed by the linearized

Liouville-Vlasov equation which we will cast into the form
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where )( 1FI
x

&  is the response to the perturbation from external impedances and/or the

counter-rotating beam.

Also, we will consider only dipole oscillations, F1 ~ exp(iψx). Let us note that in the

case of a large tunespread the beam does not oscillate as a whole (when

xxx
IFIIF ∂∂ /~)( 01 ), the dependence on Ix may be arbitrary.

4.3.1.2  The Case-Van Kampen modes

The general approach to stability analysis is to find the eigensystem of the operator Â:

λλ λ Ψ=ΨÂ (3)

which may present insurmountable difficulties. We will proceed in steps starting from the

simplest case when the second term in operator Â can be neglected (no impedances, weak

response from the counter-rotating beam due to e.g. large tunesplit).

Then in the considered case of dipole oscillations this operator is just

multiplication by the tune: Â = νx(Ix), for λ belonging to the range of νx its eigenfunctions

are the Dirac δ-functions
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where the normalization constant was chosen so that the eigenfunctions were

orthonormal with weight F0
-1

(Ix) (this will be convenient in the general case of beam-

beam interaction).
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In our simple example operator Â has only continuous spectrum, the eigenmodes

belonging to such spectrum are sometimes called the Case-Van Kampen modes.

The general solution to the Liouville equation can be presented as expansion
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in the particular case of oscillations excited

by a dipole kick of unit amplitude (in beam

σx′)
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These expansion coefficients have an

important property (the Parseval identity)
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The center-of-mass oscillations after

the unit kick
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have the spectral density S(λ)=cλ2
 which in our simple example can be found analytically

from eqs.(4,7,9):
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It has the same form as the Schottky power density in low frequency bands (see e.g.

Ref.[10]), the coincidence is owing to the Gaussian distribution function.

S(λ) F0(λ)

λ/ξx

Figure 1. Spectral density of dipole

oscillations (red) and distribution in

incoherent tunes (blue) in head-on colliding

round beams.
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4.3.1.3  Landau damping

Now we can take into consideration

external impedances which deliver dipole

kicks proportional to the center-of-mass

displacement. Let these impedances in the

absence of the tunespread produce the

coherent tuneshift ∆νcoh, generally

complex. If Im∆νcoh > 0 the beam is

unstable.

In the presence of the tunespread the

coherent tune λ  is determined by the

dispersion relation, which in the case of

weakly coupled (e.g. due to tunesplit)

oscillations has the form

01

2

coh
=

−
∆− ∫ µλ

µ
ν

µdc
, (11)

coincident with that of eq.(5.52) of

Ref.[11]. The latter contains in the

integrand the distribution function in

incoherent tunes F0(λ ) instead of the

spectral density S(λ)=cλ
2
. The difference

arises from a different nature of the

tunespread assumed in Ref.[11].

In the one-dimensional Gaussian model

S(λ) is given by eq.(10) and differs from

the distribution function in incoherent

tunes F0(λ)
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by additional multiplier Iλ.. The two

functions for the case of head-on collisions

of round beams are shown in Fig.1.

The formal identity of the dispersion

relations permits to apply the results

obtained in Ref.[11] to our case. Then from

the simplified stability criterion (5.62) of

Ref.[11] for the shown in Fig.1 spectral

width we get

x

x ξ
ξλ

ν 12.0
3

21.0

3

2/1

coh
≈≈

∆
<∆  . (13)

The coherent tuneshift at top energy can be estimated as |∆νcoh | ~10
-4

. The tunespread

in the proton beam in collision even with such small amount of pbars/bunch as

Sy(λ) Sx(λ)

λ × 10
4

Figure 2. Spectral density of horizontal (red)

and vertical (blue) oscillations in p-bunch #3

as function of λ =νx,y -νx,y0 in the beginning of

flat-top (squeeze step 1) with 10
103 ⋅=pN .

π-modeincoherent tunes

νx + 2νs

νx + νs

νx - νs

νx -2νs

Σ-mode

Figure 3. Schematic of oscillations

spectrum it two colliding bunches of

comparable intensity
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10
103 ⋅=pN  (which provides ξx ≈ 0.0025) should be (marginally) sufficient for

suppression of the dipole transverse instability.

However, before the beams are put into collision the proton tunespread is too small,

especially in the horizontal plane as Fig.2 shows for proton bunch #3 at the squeeze

step 1. Probably this is the reason why the horizontal instability is regularly observed in

the beginning of flat-top.

4.3.2.  Discrete modes of coherent beam-beam oscillations

Increasing pbar intensity will make the proton incoherent tunespread wider but this does

not automatically guarantee Landau damping. On the contrary, when the intensity ratio

exceeds 0.6 sharp spectral lines of coherent beam-beam oscillations may appear (see

Ref.[12]).

The response of pbar beam to the proton beam perturbation adds to operator Â of

eq.(2) an integral term with the two-dimensional electrostatic Green function as the

kernel (in fact we should consider the full problem described by a system of Liouville-

Vlasov equation for all interacting bunches, see Refs.[12-14] for details).

This integral operator has a discrete set of eigenvalues, so that the total operator

may have a mixed spectrum: the Case-Van Kampen continuum which reproduces the

incoherent tunespread and some number of undamped discrete lines.

4.3.2.1.  Coherent modes in two head-on colliding bunches

When intensities of colliding bunches are (approximately) equal there are two families of

modes of mutual oscillations: Σ-modes when the bunches oscillate in phase and π-modes

when the phases of their oscillations are opposite. As found in Ref.[13], the spectrum of

each family contains the continuum of incoherent tunes and discrete lines. The total

spectrum is shown schematically in Fig.3.

In short bunches the discrete Σ-mode has unshifted bare lattice tune, λ = 0, since the

νx′= -5 νx′= +5 νx′= +15

moderate tunesplit

νx
(pbar)- νx

(proton) = ξ/2

restores Landau damping

Figure 4. Effect of chromaticity and tunesplit on oscillations spectrum in two colliding bunches

of finite length σs /β
∗ = 50/35 with synchrotron tune νs /ξx

(pbar)
 = 0.035  and intensity ratio

2/1/ =pp
NN  (abscissa values in ξx

(pbar)
).
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bunches do not see each other’s displacement; this is a truly rigid-body motion.

The discrete π-mode has tuneshift exceeding maximum incoherent tuneshift, in round

beams [13]

x
ξλπ 214.1= (14)

The effect of external impedances is still described by dispersion relation (11) where

the integral should be understood now as the Stieltjes integral: a sum over the discrete

eigenvalues and the integral over the continuum.

Since the discrete lines are well separated from the continuum they generally are

not Landau damped, the beam-beam interaction only slightly reduces instability growth

rate of the π-mode (see Ref.[12] for more discussion). However, Landau damping

naturally occurs in finite length bunches due to synchrotron sidebands overlap (Ref.[14])

and can be further enhanced by adjustment of chromaticity and splitting the bare lattice

tunes in two beams (Ref.[15]).

For synchrotron sidebands overlap to occur (as illustrated by Fig.3) the synchrotron

tune should be smaller than but not negligibly small compared to the beam-beam

parameter which is true for Tevatron. Just as in the case of incoherent synchro-betatron

coupling described by eq.(4.19) of the previous Section, there is an interference between

effects of chromaticity and finite bunch length at IP.

At small bunch length (σs /β
∗« 1) the net damping effect is determined by the

coupling parameter
22)/1/(
sMx

R σβ−αν′=κ ∗ (15)

which tends to zero at the chromaticity value

8/, ≈βα=ν′ ∗
RMyx . (16)

The case of bunch length comparable to β∗ was treated in Ref.[16].

Landau damping can be visualized as the width of discrete lines in the spectra. The

upper row in Fig.4 presents the result of computation of the beam-beam spectrum (in the

simplified case of flat beams at IP) at three values of chromaticity. When the

chromaticity is close to the value given by eq.(16) the discrete modes are clearly seen, but

are completely submerged into the continuum when the chromaticity is sufficiently far

from this value.

Even with unfavorable values of chromaticity Landau damping can be restored by

splitting the bare lattice tunes in two beams by an amount ≥ξx
(pbar)

, as the lower plot in

Fig.(4) demonstrates. These two methods of enhancement of Landau damping should be

enough to ensure the coherent stability of head-on colliding bunches. However, the

multiple long-range interactions may change the picture.

4.3.2.2 Coherent modes in multiple bunches

There are three trains of 12 bunches in each beam, so that each bunch experiences 72

interactions with the counter-rotating beam. Since the gap between two trains (119 RF

buckets) is not a multiple of bunch spacing (21 RF buckets) the points where the bunches

of different trains interact are all different, therefore there are total of 138 interactions

points.

To get an idea of how the spectrum of coherent oscillations in such complicated
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system may look let us assume the bunches to be rigid and linearize the beam-beam kicks

w.r.t. the center-of-mass displacement. For long-range interactions we may assume all

particles in the bunch to get the same kick as the central particle, whereas for head-on

interactions we must take average values which are twice smaller than the kick received

by the central particle.

It is convenient to use complex normal form variables, )(b

k
a , to describe the

center-of-mass motion of the bunches:

c.c.)(2/)( )()()( += τθβ θφ b

k

i

x

b

k
aex x (17)

where k is the bunch number, b is the beam number (let pbars be the first beam and

protons the second), φx(θ) = µx(θ)-νx0θ  is periodic phase advance. Azimuthal position of

the bunch can be expressed via the common “time” τ as )()1(
k

b ϑτθ −−=  where 
k

ϑ  is

the lag w.r.t. the first bunch of the corresponding beam.

Tevatron tunes νx,y are close to half-integer values; to have a possibility to study

coherent  half-integer resonance let us include into analysis coupling via the beam-beam

potential with the mirror symmetric modes, n - νx,y , where n = Round[2νx,y].  In the linear

approximation the equations of motion become (we neglect transverse coupling and write

equations for one plane only)
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where the asterisk means complex conjugation, k  is the number of the bunch in the

λ

λ

585.20)2(
0

)1(
0 ==

xx
νν

585.20,575.20
)2(
0

)1(
0 ==

xx
νν

pbars

pbars protons

protons

Figure 5. Spectral lines of coherent  modes in 36x36 bunches (upper red lines) and

average values of incoherent tunes in proton bunches (lower green lines) and pbar bunches

(lower blue lines) at equal bare lattice tunes (top) and with tunesplit of 0.01 (bottom).
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counter-rotating beam which collides with bunch k at a given IP, χ IP is one particle

contribution to the incoherent tuneshift at the given IP, )(b

xk
ν  are incoherent tunes with

beam-beam contribution included.

To get rid of the explicit dependence on τ we can introduce new variables

,,,, )2()2()1()1()2()2()1()1( ∗∗
====

k

in

kk

in

kkkkk
aevaevauau

ττ (19)

and solve the eigenvalue problem for the system of 144 autonomous differential

equations.

Results obtained with bunch intensities Np = 1.35⋅10
11

, Np = 2.7⋅10
11

 are

presented in Fig.5 in the form of line spectra (upper red lines). For comparison average

values of incoherent tunes in proton and pbar bunches are shown with lower green and

blue lines. We should remind that the maximum incoherent tuneshift due to head-on

interactions is approximately twice larger than the average value, so that we should add

0.01 to pbar incoherent tunes and 0.005 to proton tunes.

Taking this into account we can see that if the bare lattice tunes are equal the

coherent lines are within the incoherent tunespread and should be Landau damped.

However, if the bare lattice tune for pbars is by 0.01 lower (which is presently the case in

Tevatron), then the highest coherent tune is by ≈ 0.003 out of the incoherent tunespread.

This distance can be covered only by synchrotron sidebands of order ≥ 5, Landau

damping provided by such high order sidebands may be not sufficient for stability.

Let us note in conclusion of this section that the analysis shows that the coherent

half-integer resonance mentioned earlier does not present real danger unless the tunes are

too close to 20.5 (e.g. vertical oscillations at step1 may become unstable at cited above

intensity if νy0 < 20.538).
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4.4. Experimental and numerical studies of the beam-beam effects

4.4.1. Injection

Similar to high-energy stores the beam evolution at injection is governed by interplay

of beam-beam effects and diffusion. For the present typical beam parameters (emittances

of 20 mm mrad, the rms bunch length of 1 m, the intensities of 3⋅10
11

 and 3⋅10
10

 for

proton and antiproton beams, correspondingly) and the residual gas composition the same

as in Section 3 one can estimate the emittance growth rates to be: dεx/dt ≈ dεy/dt ≈ 1.3

mm mrad/hour for multiple gas scattering,  dεx/dt + εy/dt ≈ 3 mm mrad/hour for IBS in

the proton beam, and dεx/dt + dεy/dt ≈ 0.3 mm mrad/hour for IBS in the antiproton beam.

That causes 5 – 10% emittance growth during shot setup ~1 hour time. There is also

strong IBS diffusion for longitudinal degree of freedom in the proton beam. If the bunch

lengthening would not be limited by finite size of the RF bucket the longitudinal

emittance lifetime would be ~25 hours. Although the emittance growth rates are

sufficiently small they cause significant beam lifetime deterioration due to dynamic

aperture limitations and finite size of RF bucket.

Similar to the high energy stores there are hierarchy of time scales: (1) fast particle

loss due to non-linear resonances ( ≤ 1-10 s), (2) relaxation of sharp perturbations in the

distribution function due to beam heating ( ~ 10 s – 10 min), and (3) slow diffusive decay

of beam intensity (~ 10 min – many hours).  Usually aperture is more limited in one plain

than in another, and we can consider one-dimensional model to describe the particle loss

due to diffusion. In this case the diffusion equation,










∂

∂
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∂
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∂

I

f
ID

It

f
 , (1)

needs to be solved with boundary condition f(t,I0) = 0, where I0 is the machine

acceptance. A solution of the equation can be written in the following general form
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Here An are the coefficients determined by the initial distribution, and µn are the n-th root

of the zero order Bessel function J0(x). The zero term has the slowest decay and will

dominate solution at large times, where the system comes into an equilibrium. Then the

intensity decays with time as ( )2
00

/4 µτ DI=∞ , µ0≈2.405, the shape of the distribution is

not changing with time ( )000 /J),( IIItf µ∝ , and rms emittance is

0
09.0 I≈∞ε      . (3)

Taking into account that 2// Ddtd =ε  we obtain for intensity decay time

( )dtdI //2
2

00
εµτ =∞      . (4)

For emittance growth rate
4
 of 1.3 mm mrad/hour and the acceptance of 53 mm mrad (4σ

of 20 mm mrad emittance) we obtain the beam intensity lifetime of 13 hour.  If the initial

4
 We remind that all numerical values of emittances used in the paper are the 95% emittances determined as

6 times of rms emittance. The rms emittances are used in all formulas through the paper.
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beam emittance is smaller than ∞ε  then the initial intensity lifetime will be higher than

∞τ  and otherwise if smaller.

The beam lifetime at the central orbit is usually a few hundred hours, but it strongly

deteriorates after particles moved to their helical orbits. The antiproton beam lifetime is

additionally affected by the beam-beam interaction.  Figure 1 presents the dependence of

antiproton beam lifetime on the vertical emittance for the case when antiprotons are on

their helical orbit and there are no protons in the ring. As one can see the lifetime varies

between 10-25 hours compared to lifetimes of 1-10 hours in stores, and it is strongly

correlated with the vertical emittance. The losses during acceleration were also small,

about 2%, compared to typical losses around 10% in stores. Presented in Figure 1

dependence of lifetime on the emittance and its numerical value are consistent with the

above estimate for particle loss due to the diffusive beam heating in the aperture-limited

ring. More detailed measurements are required to find precise values of the machine

acceptance and diffusion.

Figure 1. Lifetime of antiproton bunches in an antiproton only dedicated experiment as a function of the

vertical emittance (courtesy F. Schmidt); measurements were performed in September 2002.

In order to understand the influence of the beam-beam interactions, the dynamic

aperture of a few antiproton bunches at 150 GeV has been calculated with extensive

simulations. The nonlinearities in the model include the measured multipoles in the

magnets, the chromaticity and feed-down sextupoles together with the beam-beam

interactions. A systematic skew quadrupole component of a1 = 1 unit in the arc dipoles
5

is included together with the skew quadrupole circuits that correct the minimum tune split

to 0.001. Two different codes, MAD and Sixtrack, have been used for dynamic aperture

tracking. The dynamic aperture (or chaotic boundary in the case of Sixtrack) typically

agree to within 15%. Figure 2 shows a plot of the average dynamic aperture (after 10
6

5
 One unit of field gradient in the dipole represents a skew quadrupole field which value at 1 inch radius is

equal to 10
-4

 of the dipole field.
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turns or 2 seconds in the Tevatron) as a function of the proton bunch intensity from these

codes. The averaging is done over several initial angles of the particles in physical space.

The one sided error bars represent the minimum dynamic aperture at each intensity. This

plot has two predictions: (a) the dynamic aperture of antiprotons at 150 GeV is nearly

independent of the proton intensities over this range, (b) the dynamic aperture is about

3σtotal. Tracking results also show that the dynamic aperture with beam-beam interactions

drops by about 3σ total compared to the case without beam-beam interactions.total

Figure 2. Dynamic aperture after 106 turns of antiproton bunch 1 vs proton intensity at injection with two

different codes. The average value (over all angles in coordinate space) along with one-sided error bars to

represent the minimum value at each intensity are shown; reference emittance is 15 mm mrad.

Figure 3. Evolution of antiproton vertical emittance with time at 150 GeV during a recent store.
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Figure 3 shows the evolution of the vertical antiproton emittance of the first four bunches

during a recent store. Because the initial emittance is larger than the equilibrium

emittance for given dynamic aperture the diffusion and non-linear resonances cause the

emittance decrease instead of its growth. The asymptotic emittance is therefore an

experimental measure of the dynamic aperture. Using Eq. (3) we obtain that the vertical

acceptance ranges from 30 to 38 mm mrad (εaccept = ε 95% / (6 ⋅ 0.09) ), which corresponds

to 3.5- 3.9σ οf 15 mm mrad emittance and is in a good agreement with data presented in

Figure 2. Different bunches experience different long-range collisions and therefore have

different emittances at the end of the injection. Because the beam consists of three trains

of 12 bunches there is 3-fold periodicity in the antiproton bunch emittances. Figure 4

presents the typical beam emittances after beam acceleration and clearly demonstrates

this periodicity. As one can see the emittance for bunches near abort gap experience

smaller emittance growth. It can be reversed if tunes are changed.

Figure 4. Antiproton horizontal beam emittances in mm mrad after beam acceleration measured by flying

wires.

Figure 5. Dependence of intensity for antiproton bunch 1 on time after injection for Store 1845.

Figure 5 presents typical dependence of bunch intensity on time after injection. One

can see that at the beginning the intensity decays very fast τ/1 t−∝ , and then the

decay slows down, and finally becomes exponential. The reason of such behavior is that

the total extension of the initial beam distribution is larger than the dynamic or physical
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aperture. This causes an immediate scraping of the tails of the distribution after injection,

and creates a sharp fall to zero of the distribution function at the boundary value of the

action variable. This “dip” propagates as a “diffusion wave” into the core of distribution

proportionally to the square root of time after injection, tDx ∝ , causing particle loss

proportional to distribution function at the boundary, ( ) tDIf b∝ . Similar behavior is

also observed in the proton beam. There are tight aperture restrictions in all three degrees

of freedom for both beams and we need additional studies to figure out partitioning of

losses between the different planes.

Figure 6. Lifetime of antiproton bunch 1 vs physical aperture at different vertical chromaticities in a

simulation by A. Kabel (SLAC). Proton intensity per bunch = 2.2⋅1011, the horizontal chromaticity is fixed

at 2 units. There is a significant jump in lifetime when the vertical chromaticity is lowered from 4 to 2 units

for all physical apertures greater than 4σ.
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Figure 7. Dependence of proton loss on horizontal and vertical chromaticities.

Lifetime of both proton and antiproton beams is strongly affected by machine

chromaticities. Figure 6 presents preliminary results of particle tracking performed by A.

Kabel at SLAC for antiprotons. He has developed a six-dimensional code called PlibB.

The features of this code include a fast algorithm for evaluating the beam-beam kicks and
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a method for keeping track of the maximum amplitudes of each particle. This last feature

allows a lifetime evaluation for any specified physical aperture after the end of the

simulation. Transverse noise has been included to mimic the emittance growth from

residual gas scattering. No other nonlinearities are included. Simulations at the NERSC

facility, using ≈250 processors take ≈2 hours for a typical run (10
5
 turns, 4⋅10

5
 particles).

The estimated statistical error is ±6.5% for a lifetime of 1 hour. The lifetime is shown as

a function of the physical aperture for different settings of the vertical chromaticity. An

interesting prediction is a significant jump in the lifetime when the vertical chromaticity

is reduced below 4 units. A planned reduction of transverse impedance after the summer

2003 shutdown (see Section 6) should allow us to work with smaller chromaticities and is

expected to improve antiproton lifetime. Figure 7 presents experimental data verifying

strong effect of the beam chromaticities on the proton beam lifetime.

4.4.2. Ramp and squeeze

The RF voltage is kept constant in the course of beam injection and acceleration.

Therefore the RF bucket size goes down by about 10% at the beginning of acceleration.

Consequently, it causes a beam loss if initial longitudinal emittance is too large.

Dedicated studies [17] have shown that the proton losses are determined by the

longitudinal emittance and the quality of coalescing in the Main Injector. Long and/or

poorly coalesced (i.e. non-Gaussian) bunches suffered the same or higher intensity loss as

in regular stores while short nearly Gaussian bunches suffered losses less than 3%. Thus

controlling the longitudinal emittance is important for limiting the proton losses. If

correct tunes are kept in the course of acceleration the beam-beam effects on protons

during the ramp do not appear to be significant at present antiproton intensities.

Figure 8. Antiproton ramp efficiency vs proton intensities in several recent stores (courtesy P. Lebrun).

Antiproton losses during the ramp were measured to be ~2% during a dedicated

antiproton only store in September 2002. However during regular stores with protons

present, antiproton losses averaged around 11% in March 2003. Figure 8 presents the
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antiproton ramp efficiency as a function of the proton beam intensity. It clearly

demonstrates that the beam-beam interactions cause higher loss at higher proton

intensities.

The antiproton loss during the ramp is also well correlated with the antiproton vertical

emittance, as seen in Figure 9. Reducing the emittance blow-up while injecting

antiprotons in the Tevatron onto the antiproton helix would therefore also reduce the loss

during the ramp. The longitudinal emittance of antiproton beam is smaller than for proton

beam and therefore does not appear to have much influence on the antiproton losses

during the ramp.

The strong effect of beam-beam interaction on the ramp efficiency is related with

limited strength of electrostatic separators discussed in Section 3. At energies above 500

GeV there is not enough separator strength to maintain constant separations so the beam

separations fall by about 30% during the second half of the ramp causing particle loss at

the second part of the acceleration cycle.

Figure 9. Antiproton ramp efficiency vs antiproton vertical emittance in several recent stores.

4.4.3. Collision

In several dedicated studies we have explored the possibility of improving the

antiproton lifetime by changing the collision helix. In “the end of a store” study

performed on March 21, 2003 the helix was changed in both planes simultaneously for

the entire ring. The proton and antiproton losses as a function of the helix size are seen in

Figure 10. Losses stayed nearly the same when the helix was opened by 20%. On

decreasing the helix size, the losses in both beams decreased at first - perhaps due to the

beams moving away from the collimators in the long arc or delayed response due to

longer time to drift from the core to collimators. When the helix was reduced by more

than 80%, losses climbed due to a combination of beam-beam effects and tunes changing

with the helix size. Note that the study was performed at the end of store when the

strength of the beam-beam effects is significantly reduced.
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The experimental results from increasing the helix size at collision have been

somewhat mixed so far. At higher beam intensities, it may nevertheless be advantageous

to increase the beam separation so the development of possible methods to achieve this

and experimental studies need to continue.

Figure 10. Losses as a function of the helix size observed at the end of a store (courtesy: X.L. Zhang)

Figure 11. Bunch by bunch vertical emittance growth rates at the beginning of two recent stores. Lowering

the vertical tune by 0.001 helped to lower the growth rate in Store 2445.

Emittance growth at the start of a store has occasionally been a concern. In most of

these cases the antiproton emittance growth rate was large at the start, then dropped with

falling beam intensities. This emittance growth is strongly bunch dependent; typically
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bunches 1 and 12 have lower growth rates than the others. Small changes to the tune

usually suffice to lower the growth rate. Figure 11 shows an example from two recent

stores. In Store 2441 the growth rate was large for most bunches. In Store 2445 the

vertical tune was lowered by 0.001, and the growth rate came down significantly. Even

with the lower growth rate there is a difference amongst bunches, which we attribute to

the differences in bunch tunes.
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