
Run II PlanRun II Plan

Phase 1Phase 1

Current Operations Status and Near Term Plans Current Operations Status and Near Term Plans 

Dave McGinnis
DOE Review

July 21, 2003



Current Operations Status - McGinnis 2

OutlineOutline

A comparison between current performance and 
Run II Handbook projected performance will be 
shown.
This comparison will be used to illustrate the 
areas that have fallen short of expectations.
An overview of a plan that is already in progress 
and directly addresses shortcomings in collider 
performance will be presented.
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FY03 Luminosity PerformanceFY03 Luminosity Performance
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Peak Luminosity and EfficiencyPeak Luminosity and Efficiency
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Luminosity and Particles in the ColliderLuminosity and Particles in the Collider
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Run II (without the Recycler) and Run Run II (without the Recycler) and Run IbIb
Projected - 5.3x (8.5x1031cm-2 sec-1 / 1.6x1031cm-2 sec-1)
Delivered* – 1.94x (3.1x1031cm-2 sec-1 / 1.6x1031cm-2 sec-1)
More Pbars 

projected - 3.3x
• More protons on target - 2x (5x1012/2.5x1012)
• Faster Pbar cycle rate - 1.6x (2.4sec/1.5sec)

delivered* - 1.9x
• More protons on target - 1.9x (4.7x1012/2.5x1012)
• Faster Pbar cycle rate - 1x (2.4sec/2.4sec)

More Protons
projected - 1.17x (270x109/230x109)
delivered* - 0.83x (192x109/230x109)

Shorter Bunch lengths
projected form factor - 1.25x (0.37m <- 0.6 m)
delivered form factor* – 1x (0.6m <- 0.6 m)

Higher Energy
projected – 1.11x (1000 GeV/ 900 GeV )
delivered* – 1.09x (980 GeV/ 900 GeV )

*Based on average of 75 Stores between 
2/10/03 – 6/5/03
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FY03 Collider ParametersFY03 Collider Parameters

Parameter Average* St. Dev.* Best Integrated Best Peak Phase 1 End
Initial Luminosity (CDF) 31.2 9.6 42.0 47.4 68.0 x1030cm-2sec-1

Average Instantaneous Luminosity (CDF) 19.4 6.8 22.3 27.0 37.9 x1030cm-2sec-1

Integrated Luminosity per Store (CDF) 985.7 450.5 1713.0 1650.0 2251.3 nb-1

Luminosity per week (CDF) 4.7 2.6 4.6 7.0 10.9 pb-1

Number of Stores per Week 4.7 - - - 4.8
Store Length 14.4 5.5 21.3 17.0 14.5 Hours
Intentional Store Length 16.6 3.4 21.3 17.0 14.5 Hours
Aborted Store Length 10.6 6.4 - - - Hours
Store Hours per week 68.6 31.9 46.3 91.6 70.3 Hours
Time spent stacking per store 14.6 3.4 19.5 20.9 14.5 Hours
Shot Setup Time 2.8 2.6 1.8 2.0 2.0 Hours
Store Lifetime 13.6 3.8 14.9 13.6 10.8 Hours
Protons per bunch 192.1 29.0 203.8 242.0 240.0 x109

Antiprotons per bunch 20.0 4.3 24.7 25.5 36.3 x109

Start Stack 135.3 25.1 166.0 173.0 174.3 x1010

End Stack 11.2 13.6 12.0 11.0 0.0 x1010

Zero Stack Stack Rate 11.7 1.6 11.7 11.7 18.0 x1010/Hour
Zero Stacking Rate Stack Size 303.7 1.7 303.7 303.7 300.0 x1010

Pbar Transfer efficiency to Low Beta 57.9 7.5 57.7 56.7 75.0 %
HourGlass Factor 0.64 0.03  - 0.65 0.65

*Based on 75 Stores between 2/10/03 – 6/5/03
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FY03 ColliderFY03 Collider EmittancesEmittances

Emittance (measured) Average* St. Dev.* Best Integrated Best Peak Phase 1 End
Accumulator (Pbar) 5.0 1.5 6.6 7.0 7.0 π-mm-mrad
MI 8 GeV (Pbar) 7.4 1.6 8.9 9.4 9.0 π-mm-mrad
MI 150 GeV (Pbar) 8.5 1.8 10.1 10.5 11.0 π-mm-mrad
TEV 150 GeV (Pbar) 17.6 2.4 21.9 19.9 18.0 π-mm-mrad
TEV 980 GeV (Pbar) 21.2 3.2 - 24.0 19.0 π-mm-mrad
TEV Low Beta GeV (Pbar) 20.9 4.1 22.7 25.1 20.0 π-mm-mrad

Emittance (measured) Average* St. Dev.* Best Integrated Best Peak Phase 1 End
MI 8 GeV (Proton) 15.2 1.3 14.8 15.5 15.0 π-mm-mrad
MI 150 GeV (Proton) 18.1 1.2 17.5 18.3 18.0 π-mm-mrad
TEV 150 GeV (Proton) 24.5 2.4 22.3 25.9 19.0 π-mm-mrad
TEV 980 GeV (Proton) 25.9 2.0 - 26.6 20.0 π-mm-mrad
TEV Low Beta GeV (Proton) 23.4 2.6 21.9 24.1 20.0 π-mm-mrad

*Based on 75 Stores between 2/10/03 – 6/5/03
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FY03 ColliderFY03 Collider EmittancesEmittances
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FY03 Collider EfficienciesFY03 Collider Efficiencies
Efficiency Average* St. Dev.* Best Integrated Best Peak Phase 1 End

MI Injection (Pbar) 94.5 4.2 96.0 96.0 96.0 %
MI Acceleration (Pbar) 98.8 3.5 100.0 100.0 100.0 %
Coalescing (Pbar) 87.6 5.9 86.0 91.0 90.0 %
Tev Injection (Pbar) 90.2 5.7 93.0 90.0 95.0 %
TEVAcceleration (Pbar) 89.9 3.6 85.0 83.0 95.0 %
Initiate Collisions (Pbar) 92.7 8.3 92.0 91.0 97.0 %

Cumulative Efficiency Average* St. Dev.* Best Integrated Best Peak Phase 1 End
MI Injection (Pbar) 94.5 4.2 96.0 96.0 96.0 %
MI Acceleration (Pbar) 93.3 5.7 96.0 96.0 96.0 %
Coalescing (Pbar) 81.9 8.7 82.6 87.4 86.4 %
Tev Injection (Pbar) 73.8 8.8 76.8 78.6 82.1 %
TEVAcceleration (Pbar) 66.4 8.3 65.3 65.3 78.0 %
Initiate Collisions (Pbar) 62.0 9.7 60.0 59.4 75.6 %

Efficiency Average* St. Dev.* Best Integrated Best Peak Phase 1 End
MI Injection (Proton) 90.0 15.6 100.0 85.0 95.0 %
MI Acceleration (Proton) 97.8 2.2 98.0 100.0 100.0 %
Coalescing (Proton) 86.5 4.3 85.0 90.0 90.0 %
Tev Injection (Proton) 89.1 4.6 88.0 91.0 95.0 %
TEVAcceleration (Proton) 95.7 5.8 96.0 95.0 95.0 %

Cumulative Efficiency Average* St. Dev.* Best Integrated Best Peak Phase 1 End
MI Injection (Proton) 90.0 15.6 100.0 85.0 95.0 %
MI Acceleration (Proton) 88.0 15.1 98.0 85.0 95.0 %
Coalescing (Proton) 81.0 6.4 83.3 76.5 85.5 %
Tev Injection (Proton) 71.8 7.0 73.3 69.6 81.2 %
TEVAcceleration (Proton) 68.3 7.9 70.4 66.1 77.2 %

*Based on 75 Stores between 2/10/03 – 6/5/03
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FY03 Collider EfficienciesFY03 Collider Efficiencies
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Transmission EfficiencyTransmission Efficiency

At first glance, 60% antiproton transmission 
efficiency from the Accumulator Core to Low Beta 
seems to be the root of the problem.
However, the 60% transmission efficiency is 
composed of many stages of transfers each with 
relatively good efficiency 60% = (90%)5

To improve the transfer efficiency to 75%, the 
average efficiency of each stage of the pbar 
transfer must increase from 90% to  95%
Increasing the pbar transfer efficiency from 60% 
to 75% will increase the luminosity by a factor of 
1.25
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Transmission EfficiencyTransmission Efficiency

To increase the transmission efficiency we must:
Reduce emittance dilution at injection

• Injection lattice matching for pbars and protons
– First pass complete
– Second pass awaiting study time

• Injection dampers for pbars
– To be installed in early FY04

Reduce long range beam-beam effects
• Better TEV Helices

– Optimized helices at 150 GeV
» designed – waiting for study time

– Bigger and optimized helices up the ramp
» designed – waiting for study time

• Smaller beam sizes
– Injection lattice matching for pbars & protons
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Stack Size and Store LengthStack Size and Store Length
Our highest luminosities were 
obtained by shooting from large 
stacks

These large stacks 
were obtained by 
stacking for a long 
time because the 
previous store 
lasted a long time
Our desire is to run 
long stores and 
stack big.
However, our 
average store 
length is limited by 
equipment failure

The only way to 
increase the 
luminosity 
significantly in Phase 
1 is to increase the 
stacking rate0
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Pbar Stacking RatePbar Stacking Rate
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Why is the Cycle Time so Slow?Why is the Cycle Time so Slow?
Beam must be cleared off the Stacktail 
deposition orbit before next beam 
pulse.

The more gain the Stacktail has, 
the faster the pulse will move.

The Stacktail gain is limited by
• System instabilities between the core 

beam and the injected beam
• Transverse heating of the Stacktail on 

the core
As the stack gets larger

• The instability feedback path grows 
stronger

• The core transverse cooling gain is 
reduced

The gain of the Stacktail must be 
turned down to compensate
The cycle time must increase for the 
lower Stacktail gain

For a given Stacktail gain, the larger the 
momentum spread of the injected pulse, 
the longer it takes to clear the pulse from 
the Stacktail Deposition orbit.

The momentum spread coming from 
the Debuncher is too large.

• Bunch length on target
• Debuncher Cooling rate
• Debuncher asymptotic momentum

Accumulator Longitudinal Spectrum
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Debuncher Momentum CoolingDebuncher Momentum Cooling
Reducing the Debuncher Momentum Cooling Notch filter dispersion by 33% will permit the 
zero stack cycle time to be lowered from 2.4 sec to 1.7 sec

First iteration complete
Second iteration to be installed this shutdown

Starting Value is too high

Cooling rate is too slow

Asymptotic Momentum 
is too large
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More Protons at Low BetaMore Protons at Low Beta

In addition to more pbars, our highest luminosity stores were 
obtained with large number of protons/bunch
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More Protons at Low BetaMore Protons at Low Beta

The number of protons in the TEV was increased 
significantly after the combination of: 

Transverse dampers installed and commissioned at injection in 
the TEV
The removal of C0 Lambertson

• Was removed for the purpose of increasing the helix separation
• Also reduced the transverse impedance of the machine significantly 

which allowed a substantial reduction in the chromaticity of the
machine.

The F0 Lambertsons now account for a significant amount of 
the transverse impedance in the TEV

A shield will be installed in the F0 Lambertsons this shutdown 
to reduce the impedance further.

More protons in the TEV require more protons from the 
injectors in the same longitudinal phase space

Main Injector beam loading compensation – done
Main Injector longitudinal dampers – awaiting to be installed
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Large Pbar Stacks and Large Pbar Stacks and EmittancesEmittances
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Long Range BeamLong Range Beam--BeamBeam

More protons in the TEV will also exacerbate long range 
beam-beam effects
To reduce long range beam-beam effects, the TEV needs :

Reduce emittance dilution at injection
• Injection lattice matching for pbars and protons

– First pass complete
– Second pass awaiting study time

• Injection dampers for pbars
– To be installed in early FY04

Reduce long range beam-beam effects
• Better TEV Helices

– Optimized helices at 150 GeV
» designed – waiting for study time

– Bigger and optimized helices up the ramp
» designed – waiting for study time

• Smaller beam sizes
– Injection lattice matching for pbars & protons
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TEVATRON ReproducibilityTEVATRON Reproducibility

The TEVATRON is a finicky machine to operate.
We have identified a number of issues that might 
make the TEVATRON much easier to operate

TEV diagnostics
TEV coupling
TEV alignment

There is a plan to align the TEVATRON
Install a new alignment network (this shutdown)
Reduce the coupling by shimming the smart-bolts in ~100 
TEV dipoles (this shutdown)
Remove the largest magnet rolls

• Warm or cold (this shutdown) ?
Re-align the TEV magnets where needed
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TEVATRON ReproducibilityTEVATRON Reproducibility

Run II Upgrade Plan - Tevatron High Luminosity Project WBS 1.3.4
V. Shiltsev, Leader 

Tevatron BPM Upgrade WBS 1.3.4.6.4 
Project Management 

S. Wolbers (CD), Project Manager 
R. Webber (BD Inst.), Deputy Project Manager 

TBD, Project Scheduler 
TBD, Change, Quality, and Documentation Control 

BPM/BLM Specifications 
Jim Steimel (BD Tev.) 

Online Software 
B. Hendricks (BD Cont.) 

Electronics 
V. Pavlicek (CD)  

BPM/BLM Requirements 
Mike Martens (BD Tev.) 

 

Offline Software 
R. Kutschke (CD) 

Front-end DAQ Software
M. Votava (CD) 

Tevatron BPM Upgrade 
Organization Chart

A new TEV BPM system will be built to aid in orbit 
control
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SummarySummary

The goal for Phase 1, which ends in November 04, is to increase the peak 
luminosity by at least a factor of 2.2 over the present average value.
This will be done by:

Faster Stacking – 1.54x
• More protons on target – 1.06x
• Better production – 1.13x

– Orbit control in the Debuncher
• Faster Pbar cycle time – 1.28x

– Shorter bunches on target
» MI beam loading compensation
» MI longitudinal dampers

– Better Debuncher notch filters
– Fixing the stacktail phase crossover

More protons to Low Beta – 1.25x
• F0 Lambertson shielding
• Injection lattice matching
• Injection dampers
• Optimized Helices
• MI beam loading compensation
• MI Longitudinal dampers
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Summary (continued)Summary (continued)

Higher efficiency and lower emittances to low beta –
1.25x

• Injection lattice matching
• Injection dampers
• Optimized helices

In addition, we will make the TEV easier to 
operate by:

Aligning the TEV
• Alignment network
• Smart Bolt shimming
• Roll removal
• alignment

Upgrading Instrumentation
• Building a new BPM system


